Chromosome Driven Spatial Patterning of Proteins in Bacteria
نویسندگان
چکیده
The spatial patterning of proteins in bacteria plays an important role in many processes, from cell division to chemotaxis. In the asymmetrically dividing bacteria Caulobacter crescentus, a scaffolding protein, PopZ, localizes to both poles and aids the differential patterning of proteins between mother and daughter cells during division. Polar patterning of misfolded proteins in Escherichia coli has also been shown, and likely plays an important role in cellular ageing. Recent experiments on both of the above systems suggest that the presence of chromosome free regions along with protein multimerization may be a mechanism for driving the polar localization of proteins. We have developed a simple physical model for protein localization using only these two driving mechanisms. Our model reproduces all the observed patterns of PopZ and misfolded protein localization--from diffuse, unipolar, and bipolar patterns and can also account for the observed patterns in a variety of mutants. The model also suggests new experiments to further test the role of the chromosome in driving protein patterning, and whether such a mechanism is responsible for helping to drive the differentiation of the cell poles.
منابع مشابه
STUDY ON CHANGES OF PROTEINS, ENZYMES AND CHROMOSOME NUMBER IN REGENERATED PLANTS OF WHEAT (TRITICUM AESTIVUM L.)
Somaclonal variation is one of the possible sources of variation in plant breeding. To evaluate the usefulness of somaclonal variation for creating variation in Iranian cultivars of wheat, proteins, enzymes and chromosome number of regenerated and seed-produced plants of wheat (Alamout, Hyrmand and Maroon) were studied. Plantlets obtained from the immature embryos and seed culture were collecte...
متن کاملI-49: Human Y Chromosome ProteomeProject
The success of the Human Genome Project (HGP) has provided a blueprint for the approximately 20,000 gene-encoded proteins potentially active in all of the hundreds of cell types that make up the human body. Yet we still have limited knowledge about a majority of the gene-encoded proteins which are the “building blocks of life” and “cellular machinery”. It is estimated that for nearly half of th...
متن کاملI-3: Human Y Chromosome Proteome Project 2012 Update
The Human Genome Project has generated a blueprint for the approximately 20,300 gene-encoded proteins potentially active in any of 230 cell types that make up the human body (human proteome). However, based on the UniProtKB/Swiss-Prot database content, about 6000 of at the protein level; for many others, there is very little information related to protein function, abundance, subcellular locali...
متن کاملA Geometrical Model for DNA Organization in Bacteria
Recent experimental studies have revealed that bacteria, such as C. crescentus, show a remarkable spatial ordering of their chromosome. A strong linear correlation has been found between the position of genes on the chromosomal map and their spatial position in the cellular volume. We show that this correlation can be explained by a purely geometrical model. Namely, self-avoidance of DNA, speci...
متن کاملEngineering robust and tunable spatial structures with synthetic gene circuits
Controllable spatial patterning is a major goal for the engineering of biological systems. Recently, synthetic gene circuits have become promising tools to achieve the goal; however, they need to possess both functional robustness and tunability in order to facilitate future applications. Here we show that, by harnessing the dual signaling and antibiotic features of nisin, simple synthetic circ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2010